AUTHOR

TITLE
INSTITUTION REPORT NO PUB DATE
NOTE
PUB TYPE
EDRS PRICE DESCRIPTORS

IDENTIFIERS Armed Services Vocational Aptitude sattery; *Latent
Mislevy, Robert J.
Inferences about Latent Populations from Complex Samples.
Educational Testing Service, Princeton, N.J. ETS-RR-85-41
Dec 85
39p.
Reports - Research/Technical (143)
Mrol/PC02 Plus Postage.
Algorithas; Data interpretation; *Etimation (Mathematics); *Latent Trait Theory; Mathomatical Models; Prediction; P. edictor Variables; Racial Differences; Research Design; Hgampling; Sez Differences; *Statistical Inference; Statintical Studies; Surgeys; Vocetional Aptitude; Youny Adults Variables; *Missing Data; Profile of American Youth; Randomization (Statistics)

ABSTRACT

A method for drawing inferences from complex samples is based on Rubin's approach to missing data in survey research. Standard procedures for drawing such inferences do not apply when the variables of irterest are not observed directly, but must be inferred from secondary randon variables which depend on the variables of interest stochastically. This method allows reasonable inferences to be made. The key is to represent knowledge about latent variables in the furm of a predictive distribution, conditional on manifest variables. It is then possible to obtain the expectations of statistics that would have been computed if the values of the latent variables corresponding to sampied units were known, along with variance estimators that account for uncertainty due to both subject sampling and the latency of che variables. (A numerical example is presented, using data from the profile of American Youth (1980). possible responses to four arithmetic reasoning items from the Armed Services Vocational Aptitude Battery were studied for Black male and female and White male and female populations). (GDC)

[^0]
INFERENCES ABOUT LATENT POPULATIONS FROM COMPLEX SAMPLES

Robert J. Mislevy

UR nepartmant of emveation MATIOMAL IMSTITUTE OF EDUCATIOM EDUCATIONAL RESOURCES D,FOMMATION CENTEN (ERIC)
This documam hae been reproduced a receved from the person or orgencation origunating it.
[1 Minor chenges hew bean mede to mprove reproduction quality

- Ponts of view or opinions stated in thre document do not necemearily repreeent officiel NIE pomition or poticy
"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY H. Wkidenmilled

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Inferences a,out Latent Populations from Complex Samples

Robeit J. Mislevy
Educational Testing Service Princeton, New Jersey

December 1985

Running head: inferences about latent pop "ations

Cofyright (C) 1985. Educational Testing Service. All rights reserved.

Abstract

Standard procedures for drawing inferences from complex samples do not apply when the variables of interest z are not observed directly, but must be inferred from secondary random variables x that depend on 2 stochas¿ically. Employing Rubin's (1977) approach to missing data in survey research, we present a procedure by which reasonable inferences can be made in such situations. The key is to represent knowledge about latent variables in the form of a predictive distribution, conditional on manifest variables. It is then possible to obtain the expectations of statistics that would have been computed if the values of the latent variables corresponding to sampled units were known, along with variance estimators that account for uncertainty due to both subject sampling and the latency of z.

[^1]Inferences about Latent Populations from Complex Samples*
Introduction
While progress has been made in recent years in estimating latent distributions (e.g., Andersen \& Madsen, 1977; Dempster, Laird, \& Rubin, 1977; Laird, 1978; Mislevy, 1984, 1985; Sanathanan \& Blumenthal, 1978), currently available procedures remain lımited to simple random samples and are inaccessible to the typical secondary user of suavey data. 1 This paper address? the problem of estimating distributions under conditions that (1) data have been gathered from a finite population under a complex sampling design and (2) one or more variables of interest are not observed directly, but mast be inferred from responses which depend upon them stochastically (e.g., "ability" variables under an item response mode1).

Two basic approaches exist for handing uncertainty due to sampling in a finite population (see Cassel, Särndal, \& Wretman, 1977, for an overview). Unde. the "fixed population" or "randomization" approach, the only source of variation is researcher's random selection of a sample in accordance with probabilities under a given sampling design. Inferences are based on the distribution of an estimator over the samples that can occur under that design. Under the "superpopulation" approach, the finite

[^2]population itself is considered a sample from a hypothetical superpopulation. A structure is assumed for the superpopulation, its parameters are estimeted from the sampled units, and inferences are drawn with respect to remaining uncertainty about nonsampled units.

Extension to the latent variable case is possible under both approaches. Attention is restricted here to the randomization approaci:, although it must be admitted that the unifieu treatment of uncertainty from all sources in a Bayesian superpopulation solution (e.g., Mislevy, 1985) is more satisfying. Given the overwhelming predomiuance of the randomization approach in applied work, however, =here is clearly a place for a solution within its framework.

The key idea is to represent knowledge about latent variables In the form of a predictive distribution, conditional on mainfest variables, in the manner suggested by Rubin (1977) as a way of handling missing responses in survey data. In a manner also suggested by Rubin (1978), this predictive distribution can be approximated numerically by repeated random draw3. Standard complete-data procedures may then be employed to obtain the expected value of any statistic that would have been computed, had values of the latent variables been avallable. An accompanying variance estimator takes into account uncertainty due to both subject sampling and to the latency of the variables of interest.

Preliminaries

Consider a population of N identifiable urits, indexed by 1. Each is characterized by a pair of real-valued vectors (Z_{i}, Y_{i}); values of z are unknown for all units before observations are taken, although values of some components of Y may be known for all units (e.g., stratification variables). Z and Y will refer to the population matrices of these values. Interest lies in a function $S=S(2, Y)$ of the population values, but data will be obtained from only a sample of units. A sample design assigns probabilities $p(d)$ of selection to members d of \mathcal{G}, the set $0 \leq$ the 2^{N} possible subsets from and may effect complexities such as stratification and clustering. Let D be the random variable indicating the units selected in the sample. Correspondingly, (${\underset{\sim}{D}}^{D},{ }_{\sim}^{\prime}{ }_{D}$) is a random variable and $\left(z_{d},{\underset{\sim}{d}}^{d}\right)$ a generic value, representing values of z and y from n_{D} (or n_{d}) designated sample units. We shall restrict our attention to noninformative sample designs, or those for which $\operatorname{Pr}(D=d)$ does not depend on unknown values of 2 or Y; 1.e., letting $\underset{\sim}{y}(1)$ represent the prior known components of ${\underset{d}{d}}^{d}$, we have $\operatorname{Pr}\left(D=d \mid{\underset{\sim}{d}}, y_{d}\right)=\operatorname{Pr}\left(D=d \mid{\underset{\sim}{d}}_{(1)}^{d}\right)$.

Assumption 1: The estimator $s_{D} \equiv s\left(z_{D}, Y_{D}\right)$ could be used to estimate S if ($z_{D},{ }_{\sim} y_{D}$) were observed. We assume s to be unbiased-1.e., $E_{g}\left(s_{D}-S\right)=0-w i t h$ variance $V=\operatorname{Var}_{\boldsymbol{\theta}}\left(s_{D}-S\right)$ estimated by $\hat{\mathrm{V}}=$ $V\left(z_{D}, y_{D}\right)$. A normal approximation is often employed in practice:

$$
\left(s_{D}-S\right) \sim N(0, \hat{V})
$$

Suppose that observations from sampled unit 1 consist not of $\left(z_{1}, y_{1}\right)$, but rather of $\left(x_{1}, y_{1}\right)$, where x_{1} is a possibly multidimensional secondary random variable that depends stochastically upon z_{i}. An example would be the observation of right and wrong answers to test questions, assumed to depend upon a latent ability parameter in an item response model. We shall refer to unobserved variables 2 in the sequel as the latent variables, the observed variables y as collateral variables, and the observed variables x as item responses.

Assumption 2: Item responses x are governed by a model of known parametric form, characterized by possibly unknown parameters \boldsymbol{B}_{1}. We assume conditional independence with respect to collateral variables and independence over units:

$$
p\left(\underset{\sim}{x} \mid \underset{\sim}{z}, \underset{\sim}{y} ; \beta_{1}\right)=p\left(\underset{\sim}{x} \underset{\sim}{z} ; \beta_{1}\right)
$$

$=\prod_{1} p\left(x_{1} \mid z_{1} ; \beta_{1}\right) \quad$.

The General Solution

This section provides a general solution for estimating functions of variables in fixed populations, when observations are obtained from only a sample of units and values of one or more variables of interest are not directly observed. The solution proceeds in two stages. The first stage approximates conditional or predictive distributions of the latent variables corresponding to sample units; that is,

$$
p\left(z_{d} \mid x_{d}, y_{d}\right)
$$

The second stage obtains marginal distributions of statistics that would have been computed, had values of latent variables been available, conditional on observed values. Of particular interest as an estimator of S is the conditional expectation of s given ${ }_{\sim}^{x} d^{\text {and }} \underset{\sim}{y}{ }_{d}$:

$$
\begin{aligned}
& s s_{d}^{k}=s^{\star}\left(x_{d}, y_{d}\right) \\
& =E_{z}\left(s\left(z_{d}, y_{d}\right) \mid x_{d}, y_{d}\right)
\end{aligned}
$$

First, however, an additional assumption is required to compute the conditional distribution $p(z \mid x, y)$: Assumption 3: The distribution of latent variables given collateral yariables, or $p\left(\underset{\sim}{z} \mid \underset{\sim}{\mid} ; \beta_{2}\right)$, follows a krown form, with possibly unknown parameters β_{2}. Furthermore, independence is assumed over units:

$$
\mathrm{p}\left(\underset{\sim}{z} \underset{\sim}{\mid y ; \beta_{2}}\right)=\underset{1}{\pi} \mathrm{p}\left(z_{\underline{1}} \mid y_{1} ; \beta_{2}\right)
$$

This assumption resembles those used in superpopulation models for sampling from finite populations (e.g., Ericson, 1969; Royall, 1970).

Stage 1: Estimating Conditional Distributions

The task of stage 1 is to appriximate the conditional density $p\left(z_{d} \mid x_{d},{\underset{\sim}{d}}_{d}\right)$. Dropping the subscripts d on x and $\underset{\sim}{y}$, and denoting $\left(\beta_{1}, \sigma_{2}\right)$ by β, we note first that

$$
p(z \mid \underset{\sim}{x}, y)=\int p(z \mid x, y ; \beta) p(\beta \mid x, y) d \beta
$$

$$
=\int p(\underset{\sim}{x} \mid z, y ; \underset{\sim}{x} ;) p(z \mid \underset{\sim}{\mid} ; \beta) p^{-1}(\underset{\sim}{x} \mid \underset{\sim}{y} ; \underset{\sim}{p}) p(\underset{\sim}{\beta} \mid x, y) d \beta
$$

[Bayes theorem]

$$
\begin{equation*}
=\int \prod_{1} p\left(x_{1} \mid z ; \beta_{1}\right) p\left(z \mid y_{1} ; \beta_{2}\right) p^{-1}(\underset{\sim}{x} \mid \underset{\sim}{y ; \beta}) p(\underset{\sim}{\beta} \mid \underset{\sim}{x}, y) d \beta \tag{1}
\end{equation*}
$$

[Assumptions 2 and 3]
where

$$
p(\underset{\sim}{x} \mid \underset{\sim}{y} ; \beta)=\int \prod_{1} p\left(x_{i} \mid z ; \beta_{1}\right) p\left(z \mid y_{1} ; \beta_{2}\right) d z
$$

Now by Bayes Theorem,

$$
p(\beta \mid x, \dot{\sim})=p(x \mid y ; \beta) p(\beta \mid y) p^{-1}(x \mid y)
$$

where

$$
p(x, y)=\iint p(x \mid z, y ; \beta) p\left(z \mid y ; \beta \beta^{\prime} p(\beta \mid y) d z d \beta \quad ;\right.
$$

this latter quantity does not depend on β, so we can write simply

$$
\begin{align*}
& =K \underset{\sim}{x}(\underset{\sim}{\mid x} ; \underset{\sim}{\beta}) P(\underset{\sim}{\beta} \mid \underset{\sim}{y}) \tag{2}
\end{align*}
$$

Substizuting (2) into (1) and noting that $p(\beta \mid y) \equiv p(\beta)$ by the noninformativity of the sampling design, we obtain

$$
\begin{equation*}
p\left(\underset{\sim}{z \mid x, y)}=K \int \underset{\sim}{\prod_{1}} p\left(x_{1} \mid z ; \beta_{1}\right) p\left(z \mid{\underset{y}{1}} ; \beta_{2}\right) p(\underset{\sim}{\beta}) d \beta\right. \tag{3}
\end{equation*}
$$

itage 2: Estimating Marginal Distributions
The task of stage 2 is to obtain the expected value of $s(z, y)$ given the observed data $(\underset{\sim}{x}, y)$ and $p(\underset{\sim}{z} \mid \underset{\sim}{x}, y)$ from stage 1 . . fine

$$
\begin{aligned}
& =E\left[s\left(\underset{\sim}{z},{\underset{\sim}{d}}_{d}^{y}\right) \mid{\underset{\sim}{d}}^{d}, \underset{\sim}{y_{d}}\right]
\end{aligned}
$$

In words, s_{d} is the average of $s\left({\underset{\sim}{d}}_{d},{ }_{\sim}^{y}\right)$ over all possible values of z_{d} for the sample, with each value weighted by its relative likelihood given the observations. To the extent that s is a reasonable estimator of S, then, $s 0$ is s^{*} in the latent v riable case, since s^{*} is the best quadratic-loss estimator of s_{d} given ${ }_{-}^{x}{ }_{d}$ and ${\underset{d}{d}}^{d}$
T.ae magnitude of the uncertainty in 8^{*} may be approximated along the line followed by Hertzog and Rubin (1983). There are two sources of variation in 8^{*}. First there is variation due to sampling. By Assumption 1,

$$
\left.E_{A^{(8} D}-S\right)^{2}=\hat{V}
$$

Secondly, there is variation due to the latency of z even after the data x_{d} have been observed. For any given sample d, we define

$$
\hat{W}_{d}=E_{z}\left(8 k-s_{d}\right)^{2}
$$

$$
=\int\left(8 \underset{d}{*}-s\left(z_{d}, y_{d}\right)\right)^{2} p\left(z_{d} \mid x_{N}, y_{d}\right) d z_{N}
$$

Herzog and Rubin define the "comprowise" estimator \hat{U} of total variance as

$$
\hat{U}=\hat{W}_{d}+\hat{V}_{d}
$$

In the context of the analysis of nonresponse, Hertzog and Rubin demonstrate good approximation of $s_{D}^{*} \sim N(S, \hat{U})$ to nominal probability levels under a linear population model and an ignorabie model for the nonresponse process.

Closed-form evaluation of s^{*} and \hat{U} will not be possibie except In unusual cases. A numerical approximation with attractive properties for applied work is Monte Carlo integration:

$$
s^{*}(x, y) \approx R^{-1}{\underset{\sim}{R}}_{x} 8\left(z_{r}^{*}, y\right)
$$

where

$$
{\underset{N}{*}}_{*}^{x}=\left(2_{1 r}^{*}, \cdots, 2_{n \Sigma}^{*}\right)
$$

is a value selected at random from $p(\underset{\sim}{2} \mid \underset{\sim}{x}, y)$. The sampling process is carried out R times to yield R replicate pseudo-data sets of the $50 r m\left({ }_{\sim}^{*}, y\right)$. The estimator s is evaluated with each replicate data set in turn, and the results are averaged to provide an estimate of $s(2, y)$ and therefore of $S(Z, Y)$.

Production of the replicate pseudo-data sets can be carried out in two steps. First a value $\underset{\sim}{\beta} \underset{r}{*}$ is selected at randow from $p(\underset{\sim}{\beta})$. Second, because the unit distributions $p\left(z \mid x_{i}, y_{i} ; \beta\right)$ are independent conditional on $\underset{\sim}{B}$, a value $z_{i r}^{*}$ can be selected at random from $p\left(z \mid x_{1}, y_{1}, \beta=\underset{\sim}{\boldsymbol{*}}\right)$ for each unit in the sample separately. When β is well-determined by x_{d} and ${\underset{\sim}{d}}_{d}$, the generation of pseudo-data sets with ${\underset{\sim}{r}}_{\boldsymbol{\sim}}^{\boldsymbol{r}} \underset{\sim}{\hat{\beta}}$, the maximum likelihood estimate of B proves quite adequate.

By similar reasoning,

$$
\begin{align*}
\hat{U} & =\hat{W}_{d}+\hat{\mathrm{V}}_{\mathrm{d}} \\
& \approx R^{-1} \underset{r}{ }\left[s\left(z_{\sim}^{*}, y\right)-s_{\sim}^{*}(\underset{\sim}{x}, \underset{\sim}{y})\right]^{2}+R^{-1} \sum_{r} \hat{V}[s(\underset{\sim}{z}, y)] \tag{5}
\end{align*}
$$

Again in words, one approximates the variance of $8^{\boldsymbol{*}}$ by the average of $\hat{\mathrm{V}}(8)$ values for s calculated on the R pseudo-data sets, Increased by the variance of the pseudo estimates of s. When $\hat{V}(s)$ is given by a resampling scheme such jackknifing or balanced half replication, a less costly approximation for the sampling variance of s is $\hat{V}\left(s\left(z_{F}^{*}, y\right)\right)$ as computed from one randomly selected pseudo-data set. These procedures will be recognized as a variation of "multiple imputation" procedures for missing data (Hertzog \& Rubin, 1983; Rubin, 1977, 1978), with latent variables considered 100 -percent missing-that is, values are not observed from any respondent.

An important practical advantage of the multiple-imputation approach is that the same collection of pseudo-data sets can be used to estimate several different statistics S. A file containing R replicates would thus allow the secondary user to estimate without additional special programing, any statistic he or she would have
liked to calculate had 2 been observable, along with an indication of its precision that takes the latency of z into account. A Numerical Exam le

This section applies the procedures outlined sbove to a small example with data from the Profile of American Youth (U.S. Department of Defense, 1982). For each respondent, the data consist of two demographic variables y (ethnicity and sex) and four responses x to items on an aptitude test, assumed to be governed by \& single latent aptituce variable 2 . The item response wodel and conditionai estimation results are taken from Mislevy (1985); the interested reader is referred to this source for additional detail. A simplified sampling design (though still more complex chan simple random sampling) is assumed here for purposes of illustration. The Data

The data we consider were obtained as part of the Profile of American Youth, a survey of the aptitudes of a national probability sample of Americans aged 16 through 23 in July, 1980 , Table 1 presents counts of the sixteen possible response patterns to four items from the Arithmetic Reasoning subtest of the Armed Cervices Vocational Aptitude Batter. (ASVAB), Form 8A, from samples of white males and females and Black males and females. A 1 denotes a correct response, while a 0 denotes an incorrect response. Though multiple atrages of sampling were employed in
the actual design of the study, we shall treat these four groups as 3 stratified randow sample from a target population, with Blacks sampled at a rate of double that of whites.

Insert Table 1 about here

The Item Response Model
Let $x_{i j}$ represent the response of person 1 to item j. It is assumed that responses are governed by the three-paraneter logistic item response model (Birabaum, 1968), which gives the probability of a correct response as

$$
\begin{aligned}
P\left(x_{1 j}\right. & \left.=1 \mid z_{i} ; a_{j}, b_{j}, c_{j}\right)=P_{1 j} \\
& =c_{j}+\left(1-c_{j}\right) /\left\{1+\exp \left[-1.7 \varepsilon_{j}\left(z_{i}-b_{j}\right)\right]\right\}
\end{aligned}
$$

and the probability of an incorrect response as

$$
P\left(x_{i j}=0 \mid z_{i} ; a_{j}, b_{j}, c_{j}\right)=1-P_{i j},
$$

where a_{j}, b_{j}, and c_{j} are parameters that characterize the regression of a correct response to item j on 2 . These parameters,
over all four items, are denoted by B_{1} in the general solution given above. Under the usual assumption of conditional Independence; the probability of a vector of item responses x_{1} from person 1 is given by

$$
P\left(x_{i} \mid z_{i} ; \beta_{1}\right)=\Pi_{j} P_{i j}^{x_{i j}}\left(1-P_{i j}\right)^{1-x_{i j}}
$$

Abstract

*, Estimates of the item parameters, based on responses from an Independent sample of 1178 persons and computed with the BILOG computer program (Mislevy \& Bock, 1982), appear as Table 2.

Insert Table 2 about here

Conditional Distributions
Conditional multivariate normality under a satura=ed homoscedastic model is assumed so that

$$
p\left(z \mid y_{i} ; \gamma, \sigma\right)=(2 \pi \sigma)^{-1 / 2} \exp \left[-\left(z-\gamma^{\prime} t_{1}\right)^{2} / 2 \sigma^{2}\right],
$$

where $t_{1}=\left(t_{11}, t_{12}, t_{13}, t_{14}\right)$ is a design vector assuciated with respondent 1 , taking values as follows:

$$
t_{11}=1
$$

$$
\begin{aligned}
& t_{12}=\left\{\begin{array}{r}
.5 \text { if white } \\
-.5 \text { if Black }
\end{array}\right. \\
& t_{13}=\left\{\begin{array}{l}
.5 \text { if male } \\
-.5 \text { if female }
\end{array}\right. \\
& t_{14}=\left\{\begin{array}{r}
.25 \text { if white male or Black female } \\
-.25 \text { if Black male or white female; }
\end{array}\right.
\end{aligned}
$$

and where $Y=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ sepresents a constant term, an ethnicity effect, a sex effect, and an ethnicity-by-sex interaction. The common within cel. standard deviation is denoted σ. Together, Y and σ play the role of B_{2}. Under these assumptions, the conditional likelihood of the data in Table 1 is given by

$$
L=\pi \prod_{1}\left(x_{1} \mid y_{1} ; \beta\right)
$$

$=\prod_{1} \int_{z} p\left(x_{1} \mid z ; \beta_{1}\right) p\left(z \mid y_{1} ; \gamma, \sigma\right) d z$

Equating first derivatives of $\log \mathrm{L}$ to zero yields likelihood equations. For Y, after simplification,

$$
\begin{equation*}
\hat{Y}=\left(T^{\prime} T\right)^{-1} T^{\prime} \hat{\mu} \tag{6}
\end{equation*}
$$

where $T=\left(\quad \omega_{n}\right)$ and ${\underset{\sim}{\mu}}^{\sim}=\left(\hat{\mu}_{1}, \ldots, \hat{\mu}_{n}\right)$ with

$$
\begin{equation*}
\hat{\mu}_{1}=\int_{z} z p\left(z \mid x_{1} ; y_{1} ; \beta_{1} ; Y, \sigma\right) d z \tag{7}
\end{equation*}
$$

For σ,

$$
\begin{equation*}
\hat{\sigma}^{2}=n^{-1} \underset{i}{ } \int_{\rho}\left(z-\hat{\mu}_{1}\right)^{2} p\left(z \mid x_{1}, y_{1} ; \beta_{1} ; Y, \sigma\right) d z \tag{8}
\end{equation*}
$$

It will be noted that $\underset{\sim}{y}$ and σ appear in the right-hand sides of (7) and (8), necessitating iterative solution. An EM solution proceeds in repeated cycles of the form

E-step: For provisional estimates $\hat{\gamma}^{(t)}$ and $\hat{\sigma}^{(t)}$, approximate the conditional density by

$$
p\left(z \mid x_{i}, y_{i} ; \beta_{1}, \hat{Y}^{(t)}, \hat{\sigma}(t)\right)
$$

M-step: Taking this approximation as known, evalute (6)-(8) to obtain improved estimates $\hat{\gamma}^{(t+1)}$ and $\hat{\sigma}^{(t+1)}$.

With β_{1} taken as known, the only unknowns are Y and σ, parameters of a distribution in the exponential family; convergence of the EM algorithm is thereby guaranteed (Dempster, Laird, \& Rubin, 1977). Resulting estimates are

$$
\hat{\gamma}=(\cdots .13, .92, .13, .43)
$$

and

$$
\hat{\sigma}=.82 ;
$$

implied cell means are
White males . 51
White females . 15
Black males -. 63
Black females $\quad \mathbf{-} 55$
Generation of Pseudo Data
Let $U_{1}, \ldots U_{40}$ be a grid of points from -4.875 to 4.875 in equally-spaced steps of .25 . The continuous distributions given by $p\left(z \mid x_{1}, y_{1} ; \hat{\beta}\right)$ for each respondent in the sample may be approximated by discrete distributions over a finite number of points-i.e., histograms-as follows:

$$
P\left(U_{q} \mid x_{1}, y_{1} ; \hat{\beta}\right)=\frac{p\left(U_{q} \mid x_{i}, y_{1} ; \hat{\beta}\right)}{\sum_{r} p\left(U_{r} \mid x_{1}, y_{i} ; \hat{\beta}\right)}
$$

Five pseudo-data sets were generated by taking five values at random from such a hiscogram for each respondent in a two-step procedure. In the first step of obtaining $\mathbf{z}_{\mathbf{i r}}$, a random number $t_{\text {ir }}$ from the unit interval was generated to target a block in the histogram, namely thet block $\mathbf{k i r}_{\text {ir }}$ such that

In the second step, a second random number s from the unit interval was generated to specify a point in block \mathbf{k}_{ir} :

$$
z_{i r}^{k}=U_{k i r}+.25(s-.5)
$$

Table 3 gives likelihoods, a conditional distribution, a predictive distribution, and pseudo values for a typical respondent.

Insert Table 3 about here

Estimation of Marginal Distributions
As noted above, it is desired to estimate the overall mean of the population under the assumption that sampling was random within the strata defined by the cells of the demographic design, with sampling probabilities doubled for Blacks. If values of 2 had been observed rather than x, the estimate of the mean would have been

$$
\bar{z}=\frac{\bar{z}_{11}}{3}+\frac{\bar{z}_{12}}{3}+\frac{\bar{z}_{21}}{6}+\frac{\bar{z}_{22}}{6},
$$

where subscripts identify cells as follows:

$$
11 \text { = white males }
$$

$$
12 \text { = white females, }
$$

$$
21 \text { = B1ack males, and }
$$

$$
22 \text { = Black females. }
$$

Ignoring finite population corrections, an estinate of the variance of this estimator is given by

$$
\begin{equation*}
\hat{\operatorname{Var}}(\bar{z})=\frac{s_{11}^{2}}{9 n_{11}}+\frac{s_{12}^{2}}{9 n_{12}}+\frac{s_{21}^{2}}{36 n_{21}}+\frac{s_{22}^{2}}{36 n_{22}}, \tag{9}
\end{equation*}
$$

where $n_{j k}$ is the sample size in cell jk and $\mathbf{s}_{j k}$ is the estimated standard deviation.

Table 4 gives cell means and stardard deviations as estimated from the five pseudo-data sets. The expectation of the sample mean \bar{z}, given observed data, is the average of the five pseudosample means, or .0407. The variance associated with this estimate is givel by averaging values of (9) over pseudo-data sets, or .0009, plus the variance among the estimates $\bar{z}_{\bar{r}}^{k}$ or .0008 to yield a final value of . 0017 .

Insert Table 4 about here

Discussion

A necessary requirement for consistent estimates under the approach outlined above is the correct specification of $p(z \mid y)$. When the dinensionalities of z and y are low (e.g., five latent variables and five collateral varlables), it is possible to obtain a detailed nonparametric approximation of this conditional distribution (Mislevy, 1984). When dimensionalities of z and y run into the hundreds, however, as in a large-scale generalpurpose survey such as the National Assessment of Educational Progress (NAEP), simplifications and computing approximations cannot be avoided. This section, therefore, suggests some computing approximations and discusses their effects on the estimation of statistics such as differences in subpopulation means.

Point estimation of $\hat{\beta}$. The integration over $\underset{\sim}{\beta}$ required in (1) to obtain $p(\underset{\sim}{\mid x, y)}$ can be avoided in large samples when $p(\beta \mid x, y)$ is well-determined from the data. In such cases the imprecision associated with an individual's value of z that can be attributed to variation in $p\left(\underset{\sim}{\mid} \mid \underset{\sim}{x}, y_{\infty}\right)$ is negligible, and one may sample values from the wore tractible distribution $p(\underset{\sim}{z} \mid x, y ; \hat{\beta})$, where \hat{B} represents the maximum likelihsod or Bayes modal estimate estimate of β.

Solutions can be obtained by means of a generalized EM algorithm (Dempster, Laird, \& Rubin, 1977). Bock and Aitkin (1981) give procedures for solving (6) when B_{2} is known, and Mislevy (1985) gives proc=dures for solving (7) when B_{1} is known and $p\left(z \mid y_{1} ; \beta_{2}\right)$ is $\operatorname{MVN}\left(t_{1} \Gamma, \Sigma\right)$, with t_{1} a vector function of y_{1} expressing the dependence "the conditonal mean upon the effects r of collateral variables. These presentations are readily combined to give a joint solution for β_{1} and β_{2}. Such an integrated solution for the special case $p\left(z \mid y_{1}\right) \sim 11 d N(\mu, \sigma)$ may be found in Rigdon and Tsutakawa (1983).

Multivariate normal conditiona. distributions. In principle, $p(z \mid y)$ gives the distribution of the latent variables at all possible values of y. ds the Aimensionality of z increases, considerations of tractability make it increasingly attractive to model these conditional dietributions as multivariate normal (MVN)
with a . \mathfrak{n} dispersion matrix. It must be emphasized that this is not the same as assuming MVN marginal distributions among the latent variables 2. Indeed, as the number of collateral variables increases, and to the degree they are correlated with z, the estimed marginal distribution of 2 can become arbitrarily close to a true (smooth) distribution of any form.

Omission of selected interactions. Even under the assumption of conditional multivariate normality, increasing dimensionality of y rapidly overburdens available computing resources if all main ef ects and interactions of all orders are modeled in $p(z \mid y)$. A reasonable expedient is to omit all higher level interactions (interactions of order three or higher are rare in behavioral research) and, if necessary, many second order interactions as well. If main effects only are modeled, analyses of pseudo-data sets will capture them sorrectly but may be in error as to interaction effects. The degree of error is reduced to an extent depending on two factors: 1. 't will be recalled that for each respondent, stage 2 combines information from the estimated conditional distribution $p_{0}(z \mid y)$, with information from item responses via $p(x \mid z)$ in order to obtain the predictive distribution $p(z \mid x, y)$ from which random values are selected. Assuming $p(x \mid z)$ is correctly specified, one could use the resulting
pseudo-data set to obtain the empirical distribution $p^{\prime}(z \mid y)$. If $r_{0}(z \mid y)$ has been correctly specified, $P_{0}(z \mid y)$ and $p^{\prime}(z \mid y)$ will agree. If $\hat{\mathrm{P}}_{0}(\underset{\sim}{\mathrm{z}} \mid \mathrm{y})$ has not been correctly specified, information from x wlll cause $P^{\prime}(z \mid y)$ to differ from $P_{0}(z \mid y)$ value in the difection of the true distribution, by an amount equai to that achieved in one BM cycle of estimation. inl approximation of this amount can be obtained by applying the proced-ares outlined by Dempster et al. (1977, pp. 10-11) to the model that includes the onitted terms.
2. Attenuation of estimates of omitted interactions will also be ameliorated to the extent that such effects are prrelated with effects that are not omitted. This follows from results on the consequences of specification errors in linear regression models. If data are generated In accordance with parameter estimates under a model that is misspecified by the omissiou of certain effects, subsequent analyses of these data with the correct model will yield improved estimates of all effects raless the omitied effects are uncorrelated with those not omitted.

Omission of selected collateral variables. It may be reasonable to omit nonessential variables from the conditional
estimation when the total number of collateral variables is large. Statistics s* based on included variables only will not suffer from this omission; subgroup differences, for example, will be captured 100 mercent if these effects were included in the corditioning. For the reasons cited above, the attesuation of statistics based on omitted variables will not be serious when each respondent provides several item responses and as the number of included collateral variables increases; subgroup differences on omitted variables, for example, will suffer negligible attenuation if included variables are chosen carefully.

Use of reduced variables. The careful choice of variables to include in the conditional estimation includes two considerations. First, effects deemed important in their own right should be explicitly modeled if possible so that statistics based on their joint distributions will suffer no attenuation at all. Examples might include key demographic effects, treatment effects, and salient interactions. Second, rather than simply omitting remaining variables it is preferrable to include a few well-chosen linear combinations of remaining variables; e.g., the first four principle components, or factor scores based on the first three principle factors. Such use of reduced variables guarantees efficieui cse of the limited number of effects that can be modeled in recapturing to a great extent a wide range of potential statistics $\mathbf{s k}^{*}$.

References

Andersen, E. B., Madsen, M. (1977). Estimating the parameters of a latent population distribution. Paychometrika, 42, 357-374. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examince's ability. In F. M. Lord \& M. R. Novick, Statistical theories of mental test scores. Reading, MA: Addison-Wesley.

Bock, R. D., \& A1tkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443-459.

Cassel, C. M., Sarndal, C. E., \& Wretman, J. H. (1977).
Foundations of inference in survey sampling. New York: Wiley.

Dempster, A. P., Laird, N. M., \& Rubiv, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39. 1-38. Ericson, W. A. (1969). Subjective Bayesian models in sampling finite populations. Journal of the Royal Statistical Society, Series B, 31, 195-224.

Hertzog, T., \& Rubin, D. B. (1983). Using multiple imputation to handle nonresponse in sample surveys. In W. G. Madow, I. 01kin, \& D. B. Rubin (Eds.), Incomplete data in sample surveys. Volume II. Theory and bibliographies. New York: Academic Press.

Laird, N. M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805-811.

Mislevy, R. I. (1984). Estimating latent distributions. Psychometrika, 49, 359-381.

Mislevy, R. J. (1985a, in press). Estimation of latent group effects. Journal of the American Statistical Association. Mislevy, R. J. (1985b, in preparation). A Bayesian treatment of latent variables in sample surveys (Research Report). Princeton, NJ: Educational Testing Service. Mislevy, R. J., \& Bock, R. D. (1982). BILOG: Item analysis and test scoring with binary logistic models [Computer program]. Morresville, IN: Scientific Software. Royall, R. M. (1970). On finite population sampling theory under under certain linear regression models. Blometrika, 57, 377-387.

Rigdon, S. E., \& Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 567-574.

Rubin, D. B. (1977). Formalizing subjective notions about the effect of non-respondents in sample surveys. Journal of the American Statistical Association, 72, 538-543.

Rubin, D. B. (1978). Multiple imputations in sample surveys. Proceedings of the Survey Research Methods Section of the American Statistical Association, 20-34.

Rubin, D. B. (1980). Handling nonresponse in sample surveys by multiple imputation. U.S. Bureau of the Census Konorraph. Sanathanan, L., \& Blumenthal, N. (1978). The logistic model and latent structure. Journal of the Amarican Statistical Association, 73, 794-798.

Spencer, B. (1984). Simplifying complex samples with the bootstrap. Proceedings of the Survey Research Mathods Section of the American Statistical Association, 484-488.
U.S. Department of Defense, Office of the Assistant Secretary of Defense (Manpower, Reserve Affairs, and Logistics). (1982). Profile of American youth. Washington, DC.

Latent Populations

Footnote

${ }^{1}$ But see Spencer (1984) on bootstrapping the aforementioned procedures.

Table 1
Counts of Observed Besponse Patterns

Item Response				White Males	White Fensles	Black Males	Black Females
0	0	0	0	23	20	27	29
0	0	0	1	5	8	5	8
0	0	1	0	12	14	15	7
0	0	1	1	2	2	3	3
0	1	0	0	16	20	16	14
0	1	0	1	3	5	5	5
0	1	1	0	6	11	4	6
0	1	1	1	1	7	3	0
1	0	0	0	22	23	15	14
	0	0	1	6	8	10	10
	0	1	0	7	9	8	11
	0	1	1	19	6	1	2
	1	0	0	21	18	7	19
	1	0	1	11	15	9	5
	1	1	0	23	20	10	8
	1	1		86	42	2	4
TOTA				263	228	140	145

Table 2
Iten Parameters

Iten	a	b	c
1	1.27	-.13	.20
2	1.45	.42	.20
3	2.49	.71	.20
4	2.27	.62	.20

Table 3
Likelihood, Conditional Density, and Prediction Density
for a Typical Reapondent

Collateral variables y: Black, female Item reaponses $x=1100$

$U_{\mathbf{k}}$	$p\left(x \mid U_{\mathbf{k}}\right)$	$p\left(U_{k} \mid \mathbf{y}\right)$	$p\left(U_{\mathbf{k}} \mid x, y\right)$
-4.875	.026	.000	.000
-4.625	.026	.000	.000
-4.375	.026	.000	.000
-4.125	.026	.000	.000
-3.875	.026	.000	.000
-3.625	.026	.000	.000
-3.375	.026	.000	.000
-3.125	.026	.001	.000
-2.875	.026	.002	.001
-2.625	.026	.005	.002
-2.375	.027	.010	.003
-2.125	.027	.029	.006
-1.875	.028	.032	.011
-1.625	.030	.050	.018
-1.375	.034	.071	.028
-1.225	.039	.092	.043
-0.875	.049	.110	.065
-0.625	.066	.120	.095
-0.375	.092	.121	.134
-0.125	.130	.113	.176
0.125	.168	.097	.194
0.375	.171	.073	.149
0.625	.113	.045	.061
0.875	.042	.022	.012

Table 3 (contfnued)

1.125	.010	.010	.001
1.375	.002	.005	.000
1.625	.000	.002	.000
1.875	.000	.001	.000
2.125	.000	.000	.000
2.375	.000	.000	.000
2.625	.090	.000	.000
2.875	.000	.000	.000
3.125	.000	.000	.000
3.375	.000	.000	.000
3.625	.000	.000	.000
3.875	.000	.000	.000
4.125	.000	.000	.000
4.375	.000	.000	.000
4.625	.000	.000	.000
4.875	.000	.000	.000

Mean and standard deviation of $P\left(U_{k} \mid x, y\right):-.223, .614$
Five randomly selected points: .058, .333, -. 352, . $009, .176$

Table 4

Estimated Population and Subpopulation Means

Subpopulation	Pseudo-Data Set									
	1		2		3		4		5	
	Mean	Var.								
White males	. 4840	. 6928	. 5276	. 8158	. 5461	. 7547	. 5403	. 7359	. 4964	. 6825
White females	. 0804	. 7570	. 2087	. 6814	. 1964	. 6170	. 2078	. 6973	. 1351	. 7056
Black males	-. 6161	. 6054	-. 6357	. 6527	-. 5792	. 6156	-. 5758	. 6935	-. 6178	. 5573
Black females	-. 5509	. 5510	-. 5866	. 5898	-. 4833	. 6139	-. 4911	. 5220	-. 4878	. 6269
Population										
mean (\bar{z})		0064		0417		0704		0716		0262
$\operatorname{Var}(\bar{z})$		009		0009		0008		0009		0009

[^0]:
 $* \quad$ Reproductions supplied by EDRS are the best that can be rade * fron the original document. *

[^1]: Key words: EM algorithm Incomplete data Latent structure Multiple imputation procedures Sampling designs Superpopulation models

[^2]: *The author would like to thank R. Darrell Bock for calling his attention to the applicability of multiple imputation procedures to the assessment setting, and Henry Braun, Ben King, Paul Rosenbaum, and Don Rubin for commente on earlier drafts of this presentation.

